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Abstract

In multi-point Internet communication such as multicast, some-
times there is the need to share the cost of communication between
the several agents involved in the connection. This work presents some
of the most commonly used incentive-compatible, individual-rational
mechanisms that select the participating users and their cost share in a
multicast transmission, focusing on efficiency and/or budget balance.
The marginal cost and the Shapley value are presented, as well as al-
gorithms to compute the mechanism in a distributed system. Related
research is briefly presented, focusing on alternative mechanisms and
specific applications of cost sharing.

1 Introduction

With the popularization of the Internet, some important emerging applica-
tions, such as multimedia broadcasting, desktop conferencing and collabo-
rative computing, require simultaneous communication between groups of
computers, what is called multi-point communication. One or many hosts
may be required to send the same message through the network to several
hosts, leading to unnecessary redundancy on the network, and increasing
the bandwidth usage in the network. To address this issue, new strategies
and approaches were developed, such as Multicast. In a multicast communi-
cation, a message is sent not to a single host or to an entire network, but to a
group of hosts, with less redundancy and, thus, less cost of communication.

In multicast transmissions, several hosts, or agents, are interested in
receiving the transmission of a flow of data, with each agent valueing the
participation differently. Because of the heterogeneity of the network, the
participation of an agent in a multicast connection is not only dependent on
the individual valuation and cost of transmission associated to this agent in
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particular, but also to other agents’ participation in the connection, which
may lead to a share of the associated cost for transmitting the data.

In this project we present some mechanisms that were designed specif-
ically to address this problem. These mechanisms will identify, given the
agents’ valuations and the cost involved in sending the data to each sub-
set of receivers, the subset of agents that will participate in the multicast
communication, and the amount each of these agents will have to pay. This
selection has to take into consideration several properties, described in sec-
tion 2.

This project is organized as follows. Section 2 describes the general
models and properties assumed by most mechanisms described in this re-
port. Section 3 addresses two common mechanisms used to address cost
sharing. Section 4 discusses some complexity issues, mainly in terms of
network usage and computational complexity, and describes distributed al-
gorithms to implement cost sharing mechanisms. Related work on multicast
cost sharing mechanism is shown in section 5. Finally, section 6 presents
the conclusions.

2 Assumptions and Properties

In this report we will use a model that is based mostly on the model pre-
sented in [4], with some changes to focus on the terminology used in [16]
and to simplify some aspects that are explained more superficially in this
report.

We assume a user (agent) population P , where each node resides in a
location in the network. One location may have more than one user. We
assume a single source, and that there is a single path T (i) that connects
the node in which i ∈ P resides to the source. We also assume that, for a
subset of receivers R ⊆ P , the union of all paths of users that belong to R is
given by T (R) =

⋃

i∈R T (i)1. Each link l in the network has a cost c(l) ≥ 0
associated, known by the nodes on each end of the link. The cost to reach
a receiver i is given by c(T (i)) =

∑

l∈T (i) c(l). Similarly, the cost to reach a
set of receivers R is given by c(T (R)) =

∑

l∈T (R) c(l).
Given a multicast transmission, consider that each user i has a valuation

ui ≥ 0 to participate in the transmission. The user’s valuation for not
participating in the transmission is 0. Each user will also be assigned a

1We assume, for simplicity, that T (R) is a tree. This is a valid assumption if we consider
that the path T (i) for any user i is a minimum cost path, and is also assumed by many
multicast routing proposals.
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payment pi. Considering a value σi that is 1 if the user participates in the
transmission, and 0 if the user does not participate, we assume that the
user’s utility (or welfare, as defined in [4]) is defined by wi = σiui − pi.
Considering a set R of receivers, we define the overall welfare, or net worth,
of the set R as NW (R) =

∑

i∈R ui− c(T (R)). Note that the overall welfare
is not dependent of the payments.

A multicast cost sharing mechanism is defined as a mechanism that,
given the model defined above, selects the values for the functions σi(u) and
xi(u) for each agent i, i.e. it selects the receivers that will participate in the
transmission and the payment each receiver is assigned. Some properties
are required in these mechanism:

• Truthfulness: also known as incentive-compatibility, defines that each
agent will have the maximum utility if he declares his own valuation
truthfully;

• Individual Rationality: for each agent i, wi(u) ≥ 0, i.e. only agents
that participate in the transmission have payments, and this payments
are limited to the agent’s valuation;

• No Positive Transfer: limits the payments to non-negative values
(pi(u) ≥ 0), so we only consider situations in which users pay for
the right to participate;

• Consumer Sovereignty: guarantees the participation of a user if his
valuation is high enough;

• Symmetry: if two users i and j are at the same node or at different
nodes separated by a zero-cost path, and ui = uj , then xi = xj [3].

The term strategyproofness is sometimes used in the literature to refer to
dominant strategy truthfulness [3, 4, 10]. Group strategyproofness is used
to denote mechanisms that maximize the agents valuation for a truthful
declaration even if a set of users collude.

Beside these properties, some additional properties are not required, but
desired:

• Budget-balance: the revenue raised from the receivers covers the cost
of the transmission exactly (

∑

i xi(u) = c(T (R(u))));

• Efficiency: the mechanism maximizes the overall welfare NW (R(u)).

3



According to a theorem proposed by Green-Laffont in [8], these prop-
erties are not achievable simultaneously by any dominant-strategy truthful
mechanism. Feigenbaum goes beyond, proving in [3] that approximate effi-
ciency cannot be achieved simultaneously with approximate budget-balance
in strategyproof mechanisms. So, the mechanisms described in this re-
port will address one of these properties, but not both. Specifically, the
marginal cost mechanism, described in section 3.1, is efficient, but not
budget-balanced, while the Shapley value mechanism, described in section
3.2, is budget-balanced, but not efficient.

3 Basic Mechanisms

As stated in the previous section, a multicast cost sharing mechanism is
expected to be an incentive-compatible individual-rational mechanism with
no negative payments. It is also expected that budget balance and/or effi-
ciency be sought, although it is not possible to achieve both simultaneously.
In this section we present two mechanisms that support these properties: the
marginal cost mechanism and the Shapley value mechanism. These mech-
anisms are the basis for most of the recent research on the area. Both are
presented in [4].

3.1 Marginal Cost

Green and Laffont state in [7] that any efficient truthful mechanism is based
on the Groves mechanism [9]. The most well-known mechanism that sat-
isfies this property is known as VCG (Vickrey-Clarke-Groves) [1, 16]. The
marginal cost mechanism is an application of the VCG mechanism to the
multicast cost sharing problem. This mechanism is both dominant-strategy
truthful and efficient, but is not budget-balanced. In fact, this mechanism
never results in a positive revenue, and in some cases even leads to all agents
paying nothing [12]. This mechanism is defined as follows.

R′(u) = argmax
R⊆P

NW (R)

R∗(u) ∈ argmax
R∈R′

|R|

σi(u) = 1 if i ∈ R∗(u), 0 otherwise

xi(u) = uiσi −
(

NW (R∗(u))−NW (R∗(u|ui = 0))
)
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This mechanism selects as participants the users that correspond to the
largest efficient subset in the network. The payment of each user represents
the marginal contribution to the overall welfare that the user produces for
having nonzero utility for the transmission.

3.2 Shapley Value

While the marginal cost mechanism provides an incentive-compatible effi-
cient mechanism for multicast cost sharing, it lacks budget balance. For
situations where this property is required over efficiency, this mechanism is
no longer valid. Another mechanism, called the Shapley value mechanism,
provides a truthful budget-balanced mechanism for multicast cost sharing
[12, 15]. This mechanism is based on coalition theory, and thus imposes not
only truthfulness in the individual level, but also that groups of users cannot
increase their joint welfare by declaring incorrect utilities.

A budget-balanced mechanism is defined by a payment function f : 2P 7→
R
|P |, fi(R) ≥ 0 with the property that

∑

i fi(R) = c(T (R)) (the sum of the
values for the function applied to a subset of users corresponds to the cost to
reach these users). Based on this function, the following algorithm is used
to find the values for xi(u) and σi(u):

1. R′ ← P ;

2. R′ ← R;

3. xi ← fi(R
′) for each i;

4. σi ← 1 if ui ≥ xi, 0 otherwise;

5. R← {i|σi = 1};

6. Repeat steps 2 to 5 until R′ = R.

This algorithm starts selecting all users for the multicast transmission
(“grand coalition”). If any of the users has a negative utility (the cost
of sending the transmission to the user is higher than his valuation for the
transmission), this user is removed from the coalition, and the Shapley value
is recomputed. This is repeated until the subset of participants converges.

Jain proves in [10] that this algorithm provides a budget-balanced, non-
positive-transfer, individual-rational, consumer-sovereign, group strategyproof
mechanism for any cross-monotonic function f , i.e. if R′ ⊂ R, then fi(R

′) >

fi(R).
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The Shapley value mechanism, specifically, defines the function f using
the general definition of the Shapley value [15, 17], that is

fi(R) =
∑

S⊆R\i

|S|!(|R| − |S| − 1)!

|R|!
(c(T (S ∪ i))− c(T (S)))

In this formula, the cost of a link l is shared equally by all receivers who use
the link to receive the stream. Although this mechanism is not efficient, the
overall welfare produced by this mechanism is strictly higher than any other
budget-balanced multicast cost sharing mechanism, as proven in [12]. So,
the Shapley value mechanism is the closest to an efficient mechanism that
one can obtain if budget-balance is required.

4 Distributed Algorithms

Beside the properties presented in section 2, another aspect that is expected
in a multicast cost sharing mechanism is tractability, that states that the
complexity of the mechanism should be reasonable. We will consider as
complexity not only the computational complexity required to run the mech-
anism, but also what we will call network complexity, that corresponds to
the number of messages sent in total and in each link, and to the size of
each of these messages [4].

Both mechanisms presented in section 3 assume that the mechanism
designer uses as inputs the full set of valuation declarations and all the link
costs. The problem is that this information is available only locally at the
network locations, and thus has to be sent to the root. If all valuations and
costs are sent individually, the complexity either in terms of the number of
messages (if values are sent separately) or in terms of the size of a message
(if values are concatenated in a message) is linear in terms of the number
of users. The messages returning the results of σ and x are also worth
considering. Thus, to reduce the number of messages, the mechanisms have
to be adapted.

Feigenbaum presents a version of the marginal cost algorithm in [4] that
uses only two messages in each link of T (P ) to compute and distribute all
valuations and costs, one message in each direction. In fact, each message
sent from a node α in the network to its corresponding parent (the next node
in the path to the source) contains only one value, corresponding to the sum
of the utilities of the agents in node α and in its child nodes (nodes that use
α to reach the source), minus the sum of the costs of the link connecting α

to its parent and of the children links. The message is sent with value 0 if
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the cost is higher than the sum of utilities, and in this case the node does
not expect to be part of the multicast transmission. The root sends back to
each child a message corresponding to the welfare contribution of the node,
and this value is used by each node to compute the user’s participation and
payment in the multicast transmission. The marginal cost functionality is
maintained, while the number and size of messages in each link is constant.

Feigenbaum also presents in [4] a distributed version of the Shapley value
mechanism. This distributed version uses, in the worst case, O(np) messages
in total, where n is the number of users in the population (|P |) and p is the
number of links in the tree that reaches P (|T (P )|). Each link will send, in
the worst case, O(n) messages, equivalent to two messages in each step of
the algorithm (one in each direction). The algorithm works as follows:

1. Each node α sends, using a bottom-up strategy, the number of users
in the subtree rooted at α (pα);

2. The root initiates a top-down traversal, sending a message with md = 0
to all its children;

3. Each node, after receiving message md, computes md′ = c(l)
pα

+ md

(where c(l) is the cost of the link that connects α to its parent) and
sends it to its children;

4. The value md′ computed in each node is attributed as payment to each
of its users (xi);

5. If a user’s valuation is lower than the payment (ui < xi), then this
user decides to resign the participation (σi = 0);

6. Repeat the algorithm, now only with users that have not resigned,
until the number of users received by the root converges.

This algorithm provides a tool for mechanism designers that, while keep-
ing all the properties of a regular Shapley value mechanism, like truthful-
ness, budget-balance and individual rationality, distributes the computation
to the nodes, and reduces the amount of both processing and information
the root has to deal with.

Both these distributed algorithms are based on a model called the Tem-
per Proof Model (TPM), which assumes that the nodes may lie about their
valuations, but the algorithm being run is not changed. Mitchell and Teague
propose a new algorithm for marginal cost in [11] on a different model called
the Autonomous Nodes Model (ANM). In this model, agents are able to de-
viate not only their declarations, but also the distributed version of the
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algorithm that runs in their nodes. Mitchell and Teague propose a mech-
anism that prevents cheating through the introduction of asymmetric key
criptographic primitives, to verify that the user used the correct version of
the algorithm. A new version of the Shapley value mechanism algorithm is
also presented in [5].

5 Related Work

Dutta and Ray describe in [2] a mechanism used for coalition theory (n-
person transferable-utility cooperative game). The mechanism is called Egal-
itarian Mechanism, and seeks to distribute the cost equally among all the
receivers. Mutuswami shows in [13] that assuming all users draw their util-
ity values from the same probability distribution, this method maximizes
the expected size of the set served.

Jain and Vazirani introduce a budget-balanced mechanism in [10] similar
to the Shapley value mechanism, but with a function fi(R) that is computed
based on the available paths from i to other nodes including the source. This
mechanism is budget-balanced, but results in a smaller overall welfare than
the Shapley value mechanism, as shown in [4].

Penna and Ventre extend the marginal cost mechanism in [14], by pro-
viding a function of cost that is not just the sum of the link costs. The focus
on this work is multicast transmission on wireless networks, and the cost
is defined as a function on the power usage in the communication and the
Euclidean distance of the nodes. They prove that some of the properties
hold for a VCG-like mechanism, but also prove the impossibility of some
other properties.

Garg and Grosu studied the performance of both the marginal cost and
the Shapley value mechanisms in [6], and compared them through an ex-
perimental evaluation on a real network. They compare both mechanisms
in both Tamper Proof and Autonomous Nodes models, described in section
4. The results include a comparison among all four algorithm combinations,
comparing the running time in each node, the total payment received by the
mechanism, the number of users receiving the multicast transmission and
the effect of changing the number of users per node. They also study the
effect of cheating in the received payment for the Shapley value mechanism
in the Tamper Proof model.
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6 Conclusion

In this report we summarize some of the available research on multicast
cost sharing. We discussed two of the most well-known mechanisms: the
marginal cost mechanism, based on VCG, that focuses on maximizing the
overall welfare, and the Shapley value mechanism, that focuses on budget
balance and collusion truthfulness. We also showed some of the other re-
search focuses in this area, such as different mechanisms and the application
of multicast cost sharing in specific areas.
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